V2AlC: an Important Material for the Production of MXenes

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



MXenes: The Emergence Development of new materials for energy has provided hope and solutions to energy-related problems. It has also spawned many new industries and new storage systems. Electrochemical performance, safety and future development of batteries are all affected by their composition. Current electrode materials are low in conductivity and surface activity. Direct contact with electrolyte can cause material destruction, poor structure, electrochemical stability and material damage. These factors adversely affect electrode material performance. Novoselov et al. Two-dimensional graphene microsheets exfoliated from graphite. Graphene exhibits excellent electrical conductivity and thermal conductivity. The graphene has excellent electrochemical properties and potential applications in the area of new energy battery development. Although graphene’s excellent performance has drawn much attention, two-dimensional materials are limited in their application due to its high production cost and difficulties. It is important to search for graphene-like materials in two dimensions that have better performance than graphene. They are easy to procure and safe. Two-dimensional material refers to crystal materials having a thickness that is only one or few atoms. Due to its extraordinary electrical, magnetic, mechanical and thermal properties, graphene has been a hotspot for research. The discovery of MXenes-a two-dimensional new material has brought many more members into the two-dimensional family. Transition metal carbide and nitride called MXenes are prepared by selectively cutting the A layer of the MAX phases using a chemical liquidphase method. The structure of MXenes is very similar to graphene. It has the general formula Mn+1XnTz, where M is a transitional metal element and X is carbon, or nitrogen. Tz is for functional groups like OH, O F, n=1,2,3. From the structure and performance point of view, MXene is a kind of “conductive hydrophilic clay”, Its unique advantages such as high electrical conductivity/thermal conductivity/specific surface area and good mechanical properties give MXene materials unique advantages in the electrochemical field. MXene has attracted attention because of its exceptional structure and performance.

V2AlC Prepares MXenes

V2AlC, a member the MAX phase is used for the manufacture of MXenes by etching. A method exists to mix the fluoride and hydrochloric alike uniformly. Next, add V2AlC powder and stir the mixture. Place the suspended solution under a controlled temperature. Once the reaction is complete, let it cool in the environment. Dry the rinsed suspension in a vacuum at a specific temperature for a time. Two-dimensional vanadium carbonide can be prepared using this technique. This avoids the need to use toxic and strong corrosive hydrofluoric acid.

MXenes Has Broad Application Prospects

Because of its unique structure and properties, two-dimensional material plays an important part in energy storage, conversion, adsorption, separation. MXenes may be utilized in other fields as well. V2AlC is an excellent MAX phase material. The MXenes etched from V2AlC are of good quality. TRUNNANO is also known as. Lempotee Nano Technology Co. Ltd. is a reliable global supplier and manufacturer of chemical materials. They have over 12 years’ experience providing high-quality chemicals and Nanomaterials. V2AlC manufactured by our company is high in purity, fine particles size, and has low levels of impurities. We can help you if the purity is lower.
Inquiry us